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Abstract
In this paper, the way to simulate hoisting cables in real time is addressed. Weovercome instability in such
simulation by considering a two-layered model: a model for the dynamics ofa cable passing through a set of
pulleys and an oscillation model based on the classical one-dimensional wave equation. The �rst layer considers
the interaction between the cable and pulleys with the elevation equipment, while the second layer simulates cable
oscillation. Numerical instability is avoided by suspending the oscillation layer when required. Due to the system
properties, this can be carried out in such a way that does not cause signi�cant loss in the system quality. It
considers the oscillation of the cable between every pair of pulleys, collisiondetection and the variation of the
cable length very ef�ciently. Rendering issues are discussed, with remarks on how to prevent aliasing artifacts
in the cable. Ef�ciency is analyzed, including performance tests which show that the model can be run very
ef�ciently. The paper also covers how to integrate the model in a complex multibody simulation with a high degree
of interactivity.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Animation

Keywords: Physically-based Animation, Flexible Cables, Interactive Simulation

1. Introduction

In the �eld of computer animation and simulation, models
of cables and cable-like structures (ropes, hair strands, surgi-
cal thread,. . . ) are necessary in many different applications,
such as vehicle design, character animation, cloth simulation
and rendering, surgical simulators, and so on. For this rea-
son, different modeling methodologies have been proposed,
according to the particular needs and goals of their applica-
tion. However, when heavy load elevation equipment is sim-
ulated, cables are under very high tension and, usually, the
cable oscillation is not considered to avoid instability. This
leads to a loss of realism in the behavior of the simulated
equipment, as cable and pulleys are present in most cranes
both for load lift and crane structure movement.

The main concern of this paper is the simulation of a sys-
tem formed by a cable and several pulleys in high tension
situations. A suitable model for this problem should meet
the following requirements: modeling of a cable and a set of

pulleys; modeling of the cable oscillation; collision detec-
tion; variation of cable length, to simulate hoisting; and nu-
merical stability and ef�ciency, so that it can be introduced in
real-time virtual environments. The main goal of the model
is not to provide a very accurate simulation of all the aspects
involved; instead, our aim is to obtain a feasible animation of
cables and to reproduce some important features ignored in
previous real-time simulations. For this reason, the elements
involved in our methodology are chosen so that simplicity
and ef�ciency, rather than numerical accuracy, is achieved.

This paper is organized as follows. Section2 overviews
the existing methodologies for cable modeling, identifying
the main drawbacks for simulating heavy load elevation ca-
bles. In Section3 the cable model is described. In Section4
some implementation details, including collision detection
and rendering are discussed and the stability issues of the
wave equation is addressed. In Section5 the results of sev-
eral numerical tests are shown. Finally, Section6 provides
some concluding remarks and future work.
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2. Previous Work

In this section we provide an overview of previous work on
cable and strand modeling, discussing the suitability of the
different models for simulating cables under high tension.

2.1. Discrete Models

A common approach to the problem is to consider a ca-
ble or strand as a discrete system by means of a chain of
particles. The particles are joined by longitudinal and tor-
sional springs to simulate resistance to bending and stretch-
ing. This methodology has been used in hair strand model-
ing for character animation [RCT91, LK01], in thread sim-
ulation [HD00, LMGC02, ST08] and in more general de-
formable objects animation [PW89, Pro95]. This approach,
however, leads to stiff systems of differential equations, even
in the general case where tension is not as high as in eleva-
tion cables.

To overcome the instability resulting from stiff systems,
several authors have proposed the use of implicit integration
schemes, allowing ef�cient and stable simulations of cloth
[BW98,DSB99] and loose cables [LS01]. These methodolo-
gies, however, have not been used for cloth or strands sim-
ulation under high tension. In addition, the use of implicit
methods introduce further restrictions in the implementation
and in the handling of the interactions, such as collisions.

A more general approach is to consider the cable as a
chain of rigid bodies, instead of point masses, linked by
kinematic constraints. Some authors have considered this ap-
proach for loose threads [HMT01,Had06] and even for ele-
vation cables [KH01,SL08]. However, none of these works
consider the simulation of long cables going through a series
of pulleys. This situation may lead to a high number of bod-
ies per unit length, requiring a lot of computational resources
unless reduced coordinates are used [HMT01,Had06].

2.2. Continuous Models

Unlike the discrete approach, strands are also modeled as a
continuum object governed by differential equations. Hair
strands have been modeled using the cantilever beam equa-
tions [AYK92,DMTKT93], but this model is only adequate
for one free end strands. Cosserat models [Pai02] represent
an almost one-dimensional elastic structure as a parametric
curve. A frame is associated to every point in order to ob-
tain potentials to bending, stretching and twisting of loose
cables [Pai02,GS07,ST07]. However, these models are usu-
ally applied to situations in which bending is more relevant
than stretching and no previous results indicate that they are
adequate for high-tension cables.

2.3. Fake Dynamics

Another modeling methodology used for general elastically
deformable objects is based on the superposition of layered

models. These models account for the simulation of different
properties of the object by means of simple submodels that
are coupled together. This methodology has been used in the
animation of complex deformable objects, such as the struc-
ture formed by muscles in character animation [CHP89].
Barzel uses this approach [Bar97] to animate ropes and
springs by means of what he callsfake dynamics. He uses a
catenary as a basic shape for a hanging rope, which is mod-
i�ed by sine waves. In the �eld of hair simulation, this ap-
proach has also been applied successfully to obtain complex
hairstyles [WS92, KN02, BKCN03]. In these models, how-
ever, either there is no dynamics at all or the variation of the
parameters or control points is manually determined by the
animator.

2.4. Massless Springs and Simulation of Pulleys

More recently, Servin and Lacoursière [SL07] propose a
simpli�ed model to simulate an elevation cable. They con-
sider a cable as a massless spring and introduce it as a kine-
matic constraint on a multibody simulation. They consider
the simulation of a set of pulleys and the variation of the
cable length, but they neither consider cable oscillation nor
collision detection. Furthermore, they implement cable elas-
ticity using the parameters of a particular methodology and
numerical scheme for the simulation of the multibody sys-
tem, which impedes the use of simulation libraries that use a
different formulation.

In the �eld of mechanical engineering, cable modeling
is also based on different methodologies. However, mod-
els are often numerically expensive and lead to formula-
tions that are not �exible enough for interactive simula-
tion [Dv99,Auf00,GP07]. For this reason, in complex multi-
body or �nite element modeling of cranes, the dynamics
of cables is often discarded and massless springs with no
oscillation are used. See [ARNM03] for a survey on ca-
ble models in crane simulation and control. Models of pul-
leys have also been developed using the massless spring ap-
proach [Auf00,DK00,ZAL04,JC05]. In García-Fernández et
al. [GFPCMD07] a layered model is proposed which consid-
ers a massless pulley system and the wave equation for cable
oscillation. The approach is simple and ef�cient, but only a
simple two-dimensional model with many limitations is pre-
sented; the oscillation model only allow a limited movement
of the payload while interactivity is not considered. More-
over, no discussion on stability is provided.

2.5. Summary

Although the subject of cable simulation and animation has
led to a lot of research, most of the models proposed are not
adequate for interactive simulation of elevation cables when
heavy loads are lifted. On the one hand, the high mass ra-
tio between the load and the cable leads to stiffness, forcing
the use of implicit methods to guarantee stable simulation.
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On the other hand, although continuum models lead in some
cases to more stable simulations, they are more concerned
with the effect of cable bending or twisting, which is not the
most relevant feature in our problem. For these reasons, it
is dif�cult to �nd a model that meets the speci�cations im-
posed by elevation devices simulation and that considers ca-
ble oscillation, collision detection, variable length cable and
the simulation of pulleys.

3. Cable Model

In this section, a new model for the simulation of elevation
cables covering the aforementioned needs is proposed. The
system to be simulated consists of a succession of pulleys
and a cable passing through them. The pulleys and the ends
of the cable can be �xed to the world or attached to bodies of
the simulation environment. This system works as follows:
As a result of external forces (e.g. gravity or contacts) or
the movement of pulleys, the cable can oscillate. This oscil-
lation, together with the movement of pulleys, modify the
cable stretching, affecting its tension. Tension, in turn, acts
on the bodies which have a pulley attached to them, and also
modi�es the frequency of cable oscillations.

In order to formalize this system the methodology pro-
posed in [GFPCMD07] is used. The dynamics of two
physically-based models are coupled: one for the simula-
tion of the cable and pulleys, without considering oscilla-
tion, and another for the oscillation of the cable along the
segment that joins two adjacent pulleys. The �rst model can
be considered as a basis or skeleton model, while the second
model is added to the �rst one to provide additional detail.
The dynamics of both models are coupled to obtain the sys-
tem described above. Our approach is somehow similar also
to the layered dynamics proposed in [CHP89] or [Bar97].

3.1. Cable with Pulleys Model

Initially, the oscillation of the cable is discarded, i.e. it is
assumed that the cable goes straight from one pulley to the
next. Pulleys are considered frictionless [Auf00] so that the
cable moves freely along them and there is the same tension
at both sides of a pulley. Our model is a simpli�cation of the
�nite element model presented in [JC05].

Let us consider a cable of unstretched length equal toL
that passes through a set of nodesPi , i = 0; : : : ;N. Nodes
i = 1; : : : ;N � 1 are considered as pulleys, while nodes 0 and
N are considered as the points where both ends of the cable
are rigidly attached (see Figure1). Pulleys can either be �xed
to the world, be attached to a body and move with it, or have
a prescribed motion,Pi(t). LengthL can vary at a rate�L to
simulate the reel/unreel process.

Computation of the Cable Tension

Our stretching model considers a cable as a damped spring.
According to the elasticity theory, the stiffness constant of

2P
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PN
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Figure 1: Scheme of a cable passing through pulleys.

the springk is given by the young modulusE of the cable, its
cross section areaA and its lengthL, ask = EA=L [FB68].
The damping constantc is obtained experimentally. If we
denote the Euclidean distance between nodesi andi + 1 as
l i = jPi+ 1 � Pi j anddi = ( Pi+ 1 � Pi)=l i for i = 0; : : : ;N �
1, the actual, stretched, length of the cable isl = å l i . Its
derivative�l depends on the movement of pointsPk. Tension
T is computed as

T =

(
EA
L (l � L) � c( �l � �Lt ) if l > L andT > 0

0 otherwise:
(1)

Integration Into a Multibody Simulation

When considering a multibody simulation, the pulley repre-
sented by cable nodePi can be attached to one of the sim-
ulated bodies. In that case, the dynamics of that body is af-
fected by the tension of the cable acting as a force atPi . The
force that is applied on the body is the result of the tension
of the segments incident on that node:

Fi = Tdi � Tdi� 1; for i = 1; : : : ;N � 1; (2)

F0 = Td0; (3)

FN = � TdN� 1: (4)

The precise formulation used to apply an external force
on a body at a given point depends on the particular model-
ing methodology that is used for the multibody system, and
cannot be discussed here. See [Sha01] for an overview of
the most common formulations in constrained multibody dy-
namics. The procedure to simulate the cable within a multi-
body system simulation can be depicted as follows:

1. Calculate cable lengthl = å l i and its change rate�l .
2. Calculate tensionT using (1).
3. Fori = 1; : : : ;N � 1, if nodePi is attached to a body, then

� computeFi using (2–4);
� applyFi as an external force.

4. Perform the simulation step of the multibody system.

This scheme provides the same functionality as the one
proposed in [SL07] and can be used as a new approach
to massless cables. However, while the model presented in
[SL07] is based on a particular multibody dynamics formu-
lation, our model has the advantage that it can be easily in-
tegrated into complex simulations regardless the multibody
modeling methodology chosen.
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3.2. Oscillation of a Suspended Cable

A cable suspended by between points can be represented by
a curve in space. Our model provides a physically based pro-
cedure to animate this curve in an interactive way. First, a
two-dimensional horizontal model is considered. Then, its
extension to the three-dimensional case with arbitrary orien-
tation in space is explained.

Cable Oscillation in Two Dimensions

An elastic cable of linear densityr and undeformed length
L > 0 has its ends attached to pointsP0 = ( x0;z0), and
P1 = ( x1;z1), with x1 = x0 + l , with l > L so that the ca-
ble is under tensionT. Without loss of generality, we shall
consider thatx0 = 0. The external actions on the cable (e.g.
external forces, or the movement of the cable ends) are as-
sumed to act only vertically. Under this assumption, a cable
points2 [0; l ] can only move alongzaxis (see Figure2) and
its position can be expressed by its vertical coordinatev(s;t).
Let a2 = T=r . The dynamics of the cable depicted above can
be described by means of the wave equation [Fol92]:

vtt + bvt = a2vss+ F(s;t);

v(0;t) = g(t); v(l ; t) = h(t); (5)

whereF(s;t) is the vertical external force,g(t) andh(t) ex-
press the vertical position of the ends of the cable segment
(see Figure2) andbvt is a damping term.

1P

P0

v(s,t)g(t)

h(t)
s

Figure 2: Variables of the oscillation model.

In order to ease implementation, equation (5) will be
scaled so thatl does not appear in the boundary conditions.
In order to do so, the change of variablexl = s is done, with
x 2 [0;1], leading to:

vtt + bvt =
a2

l2
vxx+ F(xl; t);

v(0;t) = g(t); v(1;t) = h(t): (6)

This model is actually a simpli�cation; as a consequence
of introducing a variable lengthl = l (t) in the renormaliza-
tion, x = l (t)s, additional lower order terms appear in equa-
tion (6). However, these terms can be safely neglected under
the assumption of a high tension-to-density rate (high values
of a2) [GFPCMD07].

Although the wave equation (6) considers an almost hor-
izontal cable, this model can be placed in an arbitrary posi-
tion in space by projecting forces and displacements onto a
local reference frame. This reference frame will be de�ned

so that pointsP0 andP1 are involved, allowing the frame to
be updated properly as the points move. In order to do so,
an additional transformation is introduced next. As a result,
boundary conditions in (6) become homogeneous and the
displacement of the cable ends is introduced as an additional
term in the external forces.

Let us consider the segment that joinsP0 andP1 in (6),
given byr(x;t) = g(t)(1� x)+ h(t)x, and letu(x;t) = v(x�
t) � r(x;t); 8 x 2 [0;1]. Functionu(x;t) represents the verti-
cal distance of the solutionv(x;t) to the segment and, hence,
u(0;t) = 0; u(1;t) = 0 (see Figure3). Taking the partial
derivatives ofu and introducing them in (6) the model can
be expressed as

utt + but =
a2

l2
uxx+ R(x;t);

u(0;t) = 0; u(1;t) = 0; (7)

wherex 2 [0;1] and

R(x;t) = F(xl; t) � rtt (x;t) + brt (x;t)

1P

0P

x

u(x,t)

g(t)

h(t)

Figure 3: Variables of the transformed oscillation model.

By means of these two transformations, and under the as-
sumption of a cable under high tension, a general wave equa-
tion (5) has been transformed into a model in the interval
[0;1] with homogeneous boundary conditions (7). In the rest
of the paper this last model will be used.

Cable Oscillation in Three Dimensions

Next, the general case of a cable suspended in space is
addressed. Let a cable of lengthL suspended from point
P0 2 R3 to point P1 2 R3, and l = jjP1 � P0jj > L. Let
d = ( P1 � P0)=l be the unitary vector that points in the di-
rection of the segment that links both points. Considering a
pendulum as an a approximation to the movement of a crane
payload, the main accelerations act in the plane de�ned by
d and the gravity force. For this reason, the most noticeable
oscillations of the cable take place within this plane, while
lateral oscillations are less relevant (e.g. the swing of an hor-
izontal cable during boom rotation). In order to exploit this
property, the following local coordinate frame is de�ned:

e1 = d;

e2 =
(0;0;1) � (0;0;1)eT

1 e1

jj (0;0;1) � (0;0;1)eT
1 e1jj

;

e3 = e1 � e2:
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Vector e2 is, by de�nition, perpendicular toe1 and it is
contained within the plane de�ned bye1 and the vertical
axis. If e2 is unde�ned (whene1 = ( 0;0; � 1)) it is taken
so that it provides the maximum continuity to its evolution.
According to this local frame, cable displacement is only al-
lowed in the plane de�ned by vectorse1 ande2. Then, a point
of the cable is uniquely determined by its distance fromP0
alonge1, denoted asx, and its distance to the segmentP0P1,
denoted asu(x) (Figure4). Under this assumption, the pla-
nar oscillation model (7) can be used projecting the external
forces and the movement of pointsP0 andP1 into this plane.

x

y

z

3e

P1

1e

2e

0P

u(x)

Figure 4: The oscillation model in three dimensions is pro-
jected onto the plane de�ned bye1 and e2. A point of the
cable can be uniquely be determined by its distance fromP0
along the direction ofe1 and its perpendicular distance to
the segmentP0P1.

3.3. Coupling of the Two Models

Recall the problem of a cable passing through a set of nodes
Pi , i = 0; : : : ;N. The piece of cable suspended between ev-
ery pair of consecutive nodes,Pi andPi+ 1, is no longer con-
sidered as a straight line, but a curve in the planehe1;e2i
determined by cable oscillation. The evolution of this curve
is de�ned by means of the oscillation model (7) described
above, see Figure5.

2P

1P

P0

PN

PN-1

Figure 5: The oscillation model is superposed onto every
segment of thecable-and-pulleyssimulation scheme.

Notice that now the actual cable length between two nodes
is no longer their distance but the arc length of the solution
u(x;t), denoted aŝl i . The vectore2 associated to segmenti
will be denoted asei

2. Therefore, the procedure to compute
the cable simulation considering this model is:

1. Calculate cable lengthl = å l̂ i and its change rate.
2. Calculate tensionT using (1).
3. Fori = 1; : : : ;N � 1,

� if nodePi is attached to a body, then

– computeFiand apply it as an external force;

� project the gravity and the variation ofPi ; 8i =
0; : : : ;N � 1 onto the associatedei

2;
� using the computed value ofT, Ri andl i , evolve one

step of the wave equation model (7);
� update the value of the arc lengthl̂ i .

4. Perform the simulation step of the multibody system.

This procedure completes the model that allows simula-
tion of elevation cables in real-time. In the next section some
remarks are given on the implementation and on its use on a
real-time virtual environment.

4. Implementation Details

The integration of the partial differential equation (7) can
be done by using different methodologies. In this section
the numerical method used is explained, which achieves the
goals for ef�ciency and stability. Also, details are given on
collision detection and rendering.

4.1. Numerical Scheme and Stability

The variable coef�cient wave equation (7) presented in Sec-
tion 3 is integrated by means of a �nite difference method.
The solution is discretized asum(t) = u(xm; t), wheref xm =
hm; m = 0; : : : ;Mg, h = 1

M , is a grid on the interval[0;1].
Time is also discretized with a �xed time stepk. The pro-
posed scheme avoids situations of instability while keeping
both ef�ciency and robustness under input discontinuities.

For ef�ciency reasons, the explicit central-time-central-
space difference scheme is used. This method is stable if
and only ifl = h

k meets the conditionl a � 1, wherea is the
coef�cient of the wave equation (5) [Str04], p. 194. This sta-
bility condition implies that, givenl , the numerical scheme
becomes instable only if the value ofa increases, leading
to high frequency oscillations of the cable. In such situations
the oscillation amplitude will decay quickly due to the damp-
ing term b. Thus, in the situations that lead to numerical
instability, the difference between the solution of (5) and a
straight line will be hardly observable in a computer graphics
application; hence the oscillation model is less relevant. Ex-
ploiting this property, stability is guaranteed as follows. Dur-
ing the simulation, the stability conditionl

p
T=r =l <

p
2=2

is checked at every time step. If it is not met, the solution of
the wave equation is set tou(x) = 0 and the integration is
suspended. As soon as the stability condition is held again,
the integration is resumed, starting again fromu(x) = 0.
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4.2. Collision Detection

In order to get a highly realistic interactive simulation, it is
necessary that cables collide against the rest of the scenery
objects. Just for the shake of completeness, it is worth pre-
senting a collision detection approach that is suitable to be
used with the model proposed.

Collision detection is performed using two levels of res-
olution, allowing a more ef�cient implementation. The seg-
ment between nodei andi + 1 is enveloped by a bounding
cylinder of lengthl i and radiusr = max(jum

i j). If a collision
is detected, the cylinder is replaced by a new set of cylin-
ders de�ned by the discretization of the cableum

i . Again,
these geometries are checked for collision with the same ob-
ject that collided the envelope. If one of these cylinders is in
contact with the object, a new node is inserted in the cable,
as if a pulley had been placed at the contact point.

Figure 6: A tower crane cable collision.

The new pulley prevents the cable from penetrating the
object, but also it must allow them to separate. At the end
of every simulation step, if the cable and the object have
started to move apart, the new pulley is removed. In order
to detect it, when the pulley is inserted anormal vectorn
is computed and stored. This vector is perpendicular to the
surface of the object colliding with the cable on the inserted
nodePi . The tension of the cable applied onPi points to the
directiont = di � di� 1. If t � n � 0, the cable is moving away
from the body.

4.3. Cable Rendering

A line is a natural primitive to represent a cable. The thick-
ness of the line can be adjusted to �t the apparent size of the
cable, according to its distance to the eye point. However,
different parts of the cable may be at different distances from
the observer, even in the same cable segment (e.g. a pendu-
lum observed from above or the boom of a tower crane ob-
served from the cabin), see Figure7. Moreover, a line does
not provide the required feeling of volume when the cable

is close to the viewer. For these reasons, it is better to repre-
sent a cable by means of cylinders; the shape of the cable is
properly reproduced and textures and materials can be used.
However, a considerable aliasing is observed when the ap-
parent thickness of the cable is just of a few pixels; it appears
as a dashed line which �ickers as the cable moves.

Figure 7: The thickness of a line cannot be adjusted properly
if the distance to the observer covers a wide range (above).
The use of cylinders causes the cable to be seen as a dashed
line if no hardware anti-aliasing is used (below, left). With
our approach the inner line covers the gaps (below, right).

In order to overcome these problems, we propose a hy-
brid approach: both the cylinders and the line primitive are
rendered. With this method, when the distance to the cable
is short the central line is hidden by the cylinders, but when
the distance to the cable is long, the line �lls the gaps that
appear in the representation based only on cylinders. This
approach provides a smooth transition between both meth-
ods. See Figure7.

5. Evaluation of the Model

As it has been stated before, the main concern of this work is
not to develop a very accurate model, but to obtain feasible
simulations of cranes and other elevation machinery. Any-
how, the behavior of the model must be qualitatively correct
and must re�ect the main physical properties of the real sys-
tem. In this section, some properties of the model are ana-
lyzed in order to check its correctness and the computational
cost of the numerical scheme is studied to con�rm its suit-
ability for real-time simulations. The tests have been done
using a tower crane elevation system model.
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5.1. Energy Dissipation

The evolution of the total energy of the hook is measured in
the test system and it is compared to the same value in the
massless model. In both cases, the hook is placed at the low-
est position at which tension is 0 and all the cable segments
are set as straight lines. Then, the system is released under
the effect of gravity. The vertical position of the hook oscil-
lates until an equilibrium between tension and hook weight
is reached. Figure8 shows the evolution of the energy of the
hook for different values of cable density. It is worth noting
that, in the cable with mass, tension has also to compensate
cable weight in the horizontal segments, causing different
modes of oscillation for different densities at the beginning
of the experiment. Anyhow, it can be observed that in the
long term the decrease rate of the total energy for the mass-
less model and for the different densities are the same.
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Figure 8: Evolution of the total energy of the hook.

The pendulum frequency has also been tested for different
values of the cable density and of the damping parameters.
No indication that the oscillation of the cable should in�u-
ence on this value is found in the bibliography and our tests
con�rm this hypothesis.

5.2. Effect of Mass in Cable Dynamics

The introduction of cable mass has interesting effects on lift
systems that cannot be reproduced using massless cables. As
the energy decay test has shown, different amplitude and fre-
quency oscillations can be observed in the energy of the pay-
load for different cable densities. Furthermore, other effects
are also observable, as shown next.

Consider the tower crane in Figure9; if the hook lays on
the �oor, the catenary in the two horizontal cable segments is
large. When the lift movement starts, a short period of time
elapses until the hook begins to elevate. This effect is pro-
duced because the reduction of cable length has to reduce the
catenary before tension compensates the weight of the hook.
In our model, the introduction of mass makes this effect no-
ticeable, which is not reproduced by any other model. This

Figure 9: The effect of cable mass can be observed in the se-
quence. The hook lays on the platform until all the catenary
is reduced.

effect has considerable in�uence on the quality of a crane
model when it is used for training purposes, as it determines
response times and the vertical oscillation of the payload.

5.3. Computational Complexity

The computational complexity of the model is now dis-
cussed. For every segment, the cost of the �nite difference
scheme is linear respect to the number of spatial subdivi-
sions,M, and the computation of its arc length involves a
number of calculations that are also linear withM. Once the
arc length has been computed, only a constant number of
computations are necessary to apply forces at every node.
Thus, our model is linear with the sum of total subdivisions
used to represent the cable oscillation,N � M, which is the
number of bodies that should be used to obtain an equiva-
lent resolution in a multibody representation. Although some
multibody formulations achieve linear cost respect to the
number of bodies [Had06, SL08], these methodologies are
not that ef�cient when closed loops are formed, e.g. when
two pulleys are attached to the same body. Indeed, to our
knowledge, the use of pulleys has not been developed for
strands or cable models using multibody dynamics.

The model has been tested for performance by running
100000 simulation steps for different cable sizes. The num-
ber of nodes,N, and of interval subdivisions,M, have been
varied in a range from 10 to 100. The computational cost
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of the simplest model is below 0.02ms per time step, while
the heaviest model, with 100 nodes and 100 subdivisions
per node, spends 1.3ms per time step. This model would
be equivalent to a multibody model with 10000 bodies and
links. As a reference, the multibody model by Servin and
Lacoursière [SL08], which scales linearly with the number
of nodes, has a computational cost of around 1ms for a cable
with 24 segments.

The cable model has also been integrated into a produc-
tion tower crane simulator with no noticeable performance
reduction, while the quality of the simulation has increased
and the training capabilities of the application have been ex-
tended as a result of the new cable features (see Figure10).

Figure 10: A screen shot of the tower crane simulator devel-
oped at University of Valencia.

5.4. Limitations of the model

The model focuses on a feasible real-time animation of the
oscillations of a cable when it is under high tension, such
as crane elevation cable. In order to gain ef�ciency and sta-
bility, some assumptions are made, that are acceptable in
this situation. Bending and torsion of the cable are not con-
sidered. Also, oscillation in the horizontal direction is dis-
carded, considering only movement within a vertical plane,
as it is the most noticeable one. Instability is also prevented
by assuming that oscillation is less noticeable in the situa-
tions when it can arise. The experience in our application is
positive, but it is clear that this method can be less adequate
in other situations.

6. Conclusions

We have presented a two-layered model for crane cables that
separates the computation of cable tension and cable os-
cillation. Using this approach instability issues have been

avoided, allowing simulation in real-time. Limitations of
previous massless cables have been overcome, reproducing
some important behavior of cranes which cannot be pre-
dicted with any previous model. The dynamics of the model
has been discussed and validated and its performance has
been analyzed and supported with numerical experiments.
Also, the integration of the model into a complex simulation
environment has been addressed, including details on colli-
sion detection and rendering.

In future research, we intend to extend the model to con-
sider another features, such as cable swing and sway or pul-
ley friction. Another improvement of the model would be a
model for the simulation of very low tension situations; the
oscillation model would be switched when tension falls be-
low a given threshold.
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