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Abstract. This paper presents an application of Cellular Automata in
the field of dry Granular Systems modelling. While the study of granular
systems is not a recent field, no efficient models exist, from a computa-
tional point of view, in classical methodologies. Some previous works
showed that the use of Cellular Automata is suitable for the develop-
ment of models that can be used in real time applications. This paper
extends the existing Cellular Automata models in order to make them
interactive. A model for the reaction to external forces and a pressure
distribution model are presented and analyzed, with numerical examples
and simulations.

1 Introduction

Granular systems dynamics has been widely studied during the last decades.
The traditional approach uses fluid models and particle system models for de-
scribing the flow of granular material and the formation of heaps [1]. However,
granular systems show characteristics, such as the appearance of macroscopic
patterns or avalanches, that cannot be properly modelled using this approach.
For this reason, Cellular Automata (CA) have been used to model and study
the statistical properties of these systems [2–4].

When simulating the behaviour of a granular system in a computer graphics
application, the visualization of the system’s external surface and its evolution
is crucial [5]. The classical models employ fluid dynamics or discrete element
modelling (DEM) to study the systems. Such techniques are not appropriate,
since their computational cost makes them difficult to be included in real time
simulations. In contrast, CA based models are simple and describe the granular
system as a grid, so they can be very efficiently rendered by graphics processors
[6].

This paper deals with modelling of dry, low cohesive, granular systems for
real time computer simulation of terrain manipulation (tillage, excavation, min-
ing,. . . ). In this context, a simulation is considered to run in real time if comput-
ing a time interval of ∆t seconds takes less than ∆t using an standard personal
computer.



1.1 Granular Systems Modelling

A dry, low cohesive, granular system can be considered as a system with two
layers; the standing layer, that forms the slope or the heap of the system, and the
rolling layer, that is a thin layer that flows on the surface of the slope [1]. This
behaviour can be modelled by means of a set of partial differential equations [8]
that describe the evolution of these layers’ thickness.

The model can be formulated as follows [8, 9]: the system has two state
variables, the height of the static layer, s(x, y, t) and the height of the rolling
layer, r(x, y, t). The variation of these variables along time is expressed by the
set of equations

rt = v∇(r∇s)− γ(α− |∇s|)r (1)
st = γ(α− |∇s|)r

where α is the so called angle of repose of the system, γ is a parameter that
expresses the rate of matter transfer between layers and v is the speed of the
rolling layer, that is considered constant.

1.2 Description of the CA Model

In [7], some simplifications are taken upon this model in order to define an
update rule for a CA model that reflects the behaviour of a granular system.
The rolling layer is considered of constant width and the update rule is defined
so that matter flows in the direction of maximum slope, indicated by the vector
field −∇h(x, y).

According to the model presented in [7], a CA on an L × L square grid is
considered. This grid represents the plane on which a granular system with con-
stant density ρ is laying. The value of each cell h(i, j) ∈ IR represents the height
of the system on the cell’s centre (xi, yj). The set of points {(xi, yj , h(i, j))}ij is
a discretization of the surface {(x, y, h(x, y))}.

For each cell, (i, j), an approximation to the gradient ∇h(xi, yj) is computed.
When the slope angle obtained from this gradient arctan(|∇h|) is lower than the
repose angle of the system α, the value of cell (i, j) remains unchanged. On the
other case, if arctan(|∇h|) > α, the following update is done:

h(i, j) ← h(i, j)− z+ · (hx(i, j) + hy(i, j))
h(i + 1, j) ← h(i + 1, j) + z+ · hx(i, j)
h(i, j + 1) ← h(i, j + 1) + z+ · hy(i, j) (2)

where z+ indicates the velocity of flowing matter, and hx, hy are the partial
derivatives of h(x, y) respect to x and y, computed numerically. For further
detail on how the parameters of model (1) relate to the CA model, refer to [7].

The main advantages of this model are that it can be run in real time and
that it can be easily managed in a 3D graphics environment. However, it lacks the
possibility of interaction, which is a very important aspect in many virtual reality
and simulation applications like a driving or civil heavy machine simulator.



The goal of this paper is to derive from (2) some models that allow to perform
an interactive simulation of a granular system. Firstly, in Sect. 2, a CA model
that will be able to consider the effect of the application of vertical forces in the
system will be defined. Then, in Sect. 3, a model for the computation of pressure
under the granular system, based on the CA representation will be developed.
Finally, in Sect. 4 a brief analysis about computational issues will be done.

2 Interactive CA Model

In order to provide interactivity to the model (2), a brief analysis of the stress
propagation behaviour within a granular system will be done. Following, and
taking into account the main properties observed, a CA model to consider the
effect of applying vertical forces to the surface of the system will be proposed.

In order to maintain the constant density condition, we will assume that our
system is formed by a cohesionless material, with low compressibility. Examples
of such systems are dry sand, or many fertilizers formed by dry, hard particles.

2.1 Stress Distribution in Granular Systems

A well stated granular systems property, observed both in real systems and in
simulations, is the fact that the internal stress it is not exclusively propagated
vertically within the system. It also spreads horizontally, and forming some angle
ε with the vertical line axis [10–13]. In that way, if we consider the application
of a vertical force at a point x on the top of the surface, the stress will be
propagated not only downwards, but also horizontally pushing some material
away.

In the case the force be strong enough, the pressure transmitted from point
x to the surroundings will make some part of the material to move up, as this is
the direction where the pressure offers less resistance. After all, when the whole
process ends, the result is that the height of the material at the surrounding of
x should have raised.

2.2 The Model

If we now discard any discussion about the granular system internal properties,
the behaviour depicted above can be summarized as follows. If an strong enough
force, f , is applied at a point x, a movement of material from point x to the points
surrounding it happens. This system dynamics description is analogous to the
model of the granular system presented by (2), where an increase of the material
in cell i causes a displacement of material from that cell to its neighbours.

The new model proposed here is a modification of the original one, in which
the displacement of material can be fired both, by a large difference in height,
and by a big difference among the vertical forces applied to two neighbouring
cells.



Let’s consider a granular system on a square plane and the CA representation
defined in [7]: an L×L grid with a variable h(i, j) representing the height of the
system at the centre of cell (i, j). Let f(i, j) be the scalar value of the vertical
force applied on each cell, and let F be a real function F : IR → IR. We define
two new variables for the CA: hf as the composition hf (i, j) := F (f(i, j)), and
the sum h′ := h + hf .

For each cell (i, j), ∇h′ is computed. Then, in the cells where arctan(|∇h′|)
is higher than the resting angle of the system α, the state of the automata is
updated according to the following rule:

h(i, j) ← h(i, j)− z+ · (h′x(i, j) + h′y(i, j))
h(i + 1, j) ← h(i + 1, j) + z+ · h′x(i, j)
h(i, j + 1) ← h(i, j + 1) + z+ · h′y(i, j) (3)

where, again, z+ represents the velocity of flowing matter, and h′x, h′y are ap-
proximations to the partial derivatives of h′(x, y).

A first approximation to F is to consider the height of a square column of
material that weights exactly f . That is

F (f) = η
f

d2ρg
(4)

where g is the acceleration of gravity, ρ is the density of material, d2 is the area
of a cell of the automata and η > 0 is a parameter that allows to define how
easily the force causes matter displacement.

The force function F defined by (4) integrates very well with contact force
models based on spring-damper equations. These models are very common in
real-time applications and avoid large object interpenetrations by means of ap-
plying forces proportional to their overlapping [14, 15]. In case of a collision
between a rigid object and a granular system modelled by (3), the force defined
by (4) will cause the granular system deformation, allowing some object advance
until the deformation be large enough to eventually stop it.

2.3 Numerical Simulations

Figure 1 shows two examples of the use of the proposed models with this contact
force computation strategy. A ball has been left fall onto two system configu-
rations; a plane, and a heap. The pictures correspond to the final equilibrium
state, for a value of η = 1, with d = 0.5, α = 30o and z+ = 0.05 for the system’s
parameters. During the simulations, it has been observed that, as expected, if
the value of η is increased, matter flow is higher. Thus lower resistance to pen-
etration is offered, and higher terrain deformation can be observed. This effect
has not been shown in figures for space reasons.

Although the proposed model does not reproduce the inner processes that
drive the interaction between a granular system and a rigid object, the effect
of the interaction is the observed behaviour [16, 17], extending the application
range of the one presented in [7], by allowing its use in interactive real time
simulations.



Fig. 1. A ball thrown on two different configurations of the system. The parameters of
the simulation are η = 1, with d = 0.5, α = 30o and z+ = 0.05.

3 Pressure Distribution Model

In this section, an expression to compute the pressure supported by a cell i in
the base of the automata, according to the state of the system, will be obtained.
In order to simplify the resulting expressions, the developments will be firstly
done over a unidimensional automata. Then, the way to extend the calculus to
the general case will be shown.

Consider a unidimensional granular system, whose state is given by function
h(x), which indicates the height of every point. According to the discretization
shown in [7], this system can be represented by means of a unidimensional CA,
where every cell represents a point of the base. The cell value indicates the height
of the system in that point.

Upon this system representation, we will split the automata in vertical slices,
in such a way that the material existing over the i cell will be considered as a
pile of blocks of height H (see Fig. 2). Let mn

i be the weight of the n-th block
located over the i cell, and let pn

i be the total pressure existing on the base of
the n-th block situated over the i cell.

In order to calculate the pressure over the base of one cell, we will consider,
apart from the own block mn

i+j , the pressure received by a finite number of blocks
in the upper level[13], all of them centred over the i cell, {pn+1

i+j : j = −r, . . . , r}.
For simplicity we will only consider the closest blocks {mn+1

j : j = −1, 0, 1},
although the development for the general case is analogous.

The way pressure of layer n blocks propagates to layer n−1 will be expressed
by means of a symmetric function φ : ZZ → [0, 1], accomplishing

φ(k) = 0 ∀k : |k| > 1; φ(−1) + φ(0) + φ(1) = 1 (5)

so that φ(t) indicates the rate of the pressure received by the base of block i in
layer n which is propagated to block i + t in layer n− 1.

For seek of simplicity, we will denote φ(i) = φi, and we will use the index
summation convention, for which any repeated index i is summed over its range,
aibi :=

∑
i aibi. Using this notation the pressure over the base of the block at

height n on cell i is

pn
i = mn

i +
1∑

k=−1

φkpn+1
i+k = mn

i + φkpn+1
i+k (6)
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Fig. 2. Scheme of the system vertical decomposition in blocks of height H. The pressure
that acts on the base of block mn

i depends on the weight of blocks that are at the sides
above it (see text).

From this relation among the weight on a level and the weight on the imme-
diately superior level, after recursive substitution, the total weight over a cell in
the base is

p0
i = m0

i + φk1m1
i+k1

+ φk1φk2m2
i+k1+k2

+ · · ·
+ φk1 · · ·φkn−1mn−1

i+k1+···kn−1
+ φk1 · · ·φknpn

i+k1+···kn
(7)

where l again takes values in {−1, 0, 1}. This sum ends when the top of the
system is reached, since if N ∈ IN is such that NH overpasses the system’s top,
mn

i = 0, ∀i, ∀n > N .
Equation (7) expresses a pressure model that can be applied to a granular

system represented by a CA. This expression does not depend on the update
rule of the CA, but only on its state. For this reason, it can be applied both to
the original CA and to the one defined in Sect. 2. Note that, when considering
the action of an external force f , it is only necessary to add equivalent weight
to the block where the force is applied.

However, (7) involves the computation of a large summation whenever the
system is updated, i.e. when one of the top mn

i blocks is modified. This is unaf-
fordable in real time applications, where a set of cells must be updated several
times per second. For this reason, a rearrangement of (7) will be done to allow
a more efficient pressure distribution update after a local change affecting a few
cells.

Sorting the terms in (7), it can be rewritten as

p0
i =

N∑
n=0

n∑

j=−n

ajnmn
i+j (8)

where
ajn =

∑

k1+···+kn=j

φk1 · · ·φkn ; a00 = 1. (9)

Generalization of this model to a bi-dimensional system is straightforward,
from (6), and using a bi-dimensional weight expression φij . Total weight over



(i, j) cell is obtained as

p0
ij =

N∑
n=0

n∑
s=−n

n∑
t=−n

astnmn
i+sj+t (10)

where
astn =

∑

k1+···+kn=s

∑

l1+···+ln=t

φk1l1 · · ·φknln ; a000 = 1. (11)

Therefore, from (10) and (11) it is possible to calculate pressure exerted by
the system over every cell in the base.

This model depends of two parameters: the local distribution function φ,
and the block height, H. Election of function φ determines how the material
is distributed from one layer to the immediately lower. As indicated before,
and according to several experimental and simulation studies [12, 13], load is
distributed towards the sides. Thus, it is recommended to take φ as φ(−1) =
φ(1) = ε, φ(0) = 1 − 2ε, with 1

3 < ε < 1
2 . This makes that most of the load

distribution will be addressed to the neighbour cells, and not to the one located
just below.

By the other side, election of parameter H determines the angle with re-
spect to the vertical in which the load is propagated, δ = arctan d

H . This angle
depends on the characteristics of each system and should be obtained exper-
imentally. However, and according to experimental and simulation results by
several authors [11–13, 19] most frequent values oscillate between 30o and 45o

with respect to the vertical, which yields d < H < 2d.

3.1 Numerical Simulations

The model described previously has been implemented and simulated in order
to be compared to other simulations and experimental observations. Numerical
simulations have been performed, starting from an unidimensional system like
the one used in the model developments. These simulations have used a system
with d = 0.5, α = 30o and z+ = 0.05, with density ρ = 1, taking 30o, 34o and 45o

for δ, and φ with ε = 0.4. The most common experiment used in the literature
has been reproduced, consisting on forming a heap by dropping material in a
circular area over an horizontal plane. As results, the pressure distributions in
the base of the automata, once the system reach the steady state, have been
obtained.

In Fig. 3, simulation results show a curve that smoothly follows the heights of
the system. This result is the same that the one obtained from other authors that
have studied the case of material with constat density with numerical simulations
[11], and furthermore, our results do not vary significantly from some other
experimental results [10], except just in the fact that they show fluctuations
that can not be viewed in our results due to the uniformity of our system.

It can be seen in Fig.3 that no substantial difference can be observed upon
the election of parameter δ, which indicates robustness on the procedure followed
to develop the model.
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Fig. 3. Pressure distribution under a heap formed by deposition of material. The y axis
represents the pressure over each point of the base of the heap, that has been formed
by deposition of material at point x = 0. (a) Pressure distribution for different values
of H. (b) Detail of the central region of the heap.

4 Computational Cost Analysis

In this work, the computational properties of the implemented algorithms are
of great importance. The main motivation for developing CA based models has
been the possibility to solve such models in the computer in real time, allowing
their incorporation to graphics and simulation applications. Therefore we will
focus in a detailed analysis of their computational cost, to show that they are
efficient enough to make possible their inclusion in such kind of applications.

The new CA defined in this paper (3), has the same computational cost
that the one described in [7]. This was predictable, since the new interactive
model just incorporates four additions and two divisions per cell. Both offer
a maximum cost of order L2 for an automata L × L, but an implementation
sufficiently optimized offers a cost of order L [6]. As a result, they have been
successfully used in real time graphic applications [7].

It is also necessary to evaluate the influence of the pressure model calculation
in the overall performance of the new algorithm. Calculating the coefficients astn

from (10) implies, if using a recursive algorithm and dynamic programming, a
cost of order N3. However, it is not necessary to make this computation every
time (10) is computed, since they can be calculated only once for the chosen
function φ.

Once the coefficients have been calculated, pressure over a cell computation,
using (10), requires (2n + 1)2 products for every level, n = 1, . . . , N . However,
the computation of the pressure for the whole system should be done just before
the simulation starts, according to the system initial state.

As of that moment, only those cells that are modified by external causes
will produce changes in the pressure distribution, affecting a square area centred
in the cell. This square side will be the number of blocks of height H that are



occupied on that cell. In these cells, only those terms involving the modified
block need to be calculated.

Summarizing, we can state that, by one side, the CA model described in this
paper has a computational cost that, with the appropriate implementation, can
be reduced to be of order one respect to the side of the automata L. By the other
side, the pressure distribution model in the base of the CA, although it requires a
costly initialization, it can be done previously to the simulation. Once the model
has been set up, the cost of the pressure update after a system modification is
bounded by the square of the number of blocks of height H in which the system
is split, N . This number is usually one order of magnitude below L.

Therefore, the given computational costs allow the use of the automata model
in the realistic simulations included in interactive real time applications.

5 Conclusions

In this paper, an application of CA models to interactive simulation of granular
systems is presented. The main goal has been to develop efficient models of a
complex system, for which the usual modelling methodologies are computation-
ally expensive.

The proposed models complement the work previously done [7], widening it
use range, and allowing CA as a valid alternative to classical models in granular
systems simulation. They improve the previous model by adding two modes of
interactivity. On the one hand, a model of the system response to an external
force is proposed. On the other hand, a model for pressure distribution at the
base of the system is developed.

The models have a realistic behaviour, according to granular systems bibliog-
raphy. The response model of Sect. 2 behaves properly from a qualitative point
of view according to the numerical tests performed, and the force distribution
obtained accomplishes the main properties shown by experimentation and other
simulation methodologies.

Furthermore, it has been shown that both models offer a reduced compu-
tational cost during the simulation, which makes them suitable for real time
interactive applications such as computer graphics applications and simulation
applications.

As a future research, some of the aspects of this work will be studied in
more detail. Different expressions for the force function fh will be analyzed,
according to several equilibrium conditions. Within this work, the pressure model
has only been numerically investigated for the case φ(k) = 0 if |k| > 1. Numerical
experiments have to be done for the more general case. Also, some research has
to be done in order to obtain revisions of the pressure model that reproduce
effects observed in real and simulated systems, and that are not reproduced by
the current model. In addition, new models for tool-terrain interaction will be
developed in order to consider additional situations, such as the horizontal forces
that appear on a vertical system-tool interface.
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